‘1.5 OPERATING SYSTEM STRUCTURE

Since operating system is a very large and.complex soltware, supports large number of

functions. It should be developed as a collection of several smaller modules with carcfully

defined inputs, outputs and functions rather than a single picce of sof tware, In this section
4 Pl L Y ¥

we will examine different operating system structure,

1.5.1 Layered Structure Approach

The operating system architecture based on layered approach consists of number of layers
(leve's), each buiit on top of lower layers. The bottom layer is the hardware; the highest layer
is the user interface. The first system constructed in this way was the THE system built by
E.W. Dijkestra (1968) and his students. The THE system was a simple batch operating
system which had 32k of 27 bit words. \

The system supported 6 layers in (Figure 7).

Scanned with CamScanner

1.5.2 Kernel Approach o | P

Kemel is that part of operating system which directly makes interface with hardwarg ay!wm

Its main functions are! i r

* To provide a mechanism for creation and deletion of processes

* To provide processor scheduling, memory management and 1/O management

* To provide mechanism for synchronisation of processes so that processes synchronjzg
their actions. _

* To provide mechanism for interprocess communication,

The UNIX operating system is based on kernel approach (ligure 8). It consists of two
separatable parts: (1) Kernel (ii) System Programs

As shown in the figure 8, kernel is between system programs and hardware. The kernel
supports the file system, processor scheduling, memory management and other operating
system functions through system calls. UNIX operating system supports a large number of
system calls for process management and other. operating system functions. Through these
system calls program utiliscs the services of operating system (kernel).

Scanned with CamScanner

w—-—f’v""" b

.
tuation is analoBoss communication line of telephone company which enables t i:i:f: 3 um
pie Oft Slttrl:xclluigglawd conversations over the same wire(s). It
separate
The following figure illustrates this concept.

A Real Machine

Virtual

machine ’
operating
system OS

Reader
Reader
) virtual
er_tual Virtual storage
S Disk Virtual
Input device
line read

Figure 9: Creation of several virtual machines by a single physical machine

From the user’s view point, virtual machine can be made 10 appear to very similar to existing
real machine or they can be entirely different. An important aspect of this technique is that

each user can run operaling system of his own choice. This fact is depicted by OS;
(Operating System 1), 0S5, OS5 etc. in figure 9.

1o upderstand this concept, let us try to understand the difference between conventional
multiprogramming system (figure 10) and virtual machine multiprogramming (figure 11). In
conventional multiprogramming processes are allocated a portion of the real machines
resources. The same machine resources are distributed among several processes.

 ‘multi-programing
| operating system

mming

0 : Conventional multipregrs

Figure1

HECIERERY S ke

Scanned with CamScanner

1.5.4 Client-Server Model

VM/370 gains much in simplicity by moving, a large part of the traditional operating system
code (imﬁlcmcmim: the extended machine) into a higher layer itself. YVM/370 is still a
complex program because simulating a number of virtual 370s is not that simple (especially
if you want to do it efficiently).

A trend in modern operating systems is to take this idea of moving code up inte higher layers
even further, and remove as much as possible from the operating system, leaving a minimal
kernel. The usual approach is to implement most of the operating system functions in user
processes. To request a service, such as reading a block of a file, a user process (now known
as the client process) sends the request to a server process, which then does the work and
sends back the answer.

In this model, shown in figure 12, all the kernel does is to handle the communication
between clients and servers. By splitting the operating system up into parts, each of which
only handles one facet of the system, such as file service, process service, terminal service or
memory service. This way, each part becomes small and manageable. Furthermore, because
all the servers run as user-mode processes, and not in kernel mode, they do not have direct
access to the hardware. As a consequence, if a bug in the file server is triggered, the file
service may crash, but this will not usually bring the whole machine down.

User Client Client Process Terminal , File Memory
mode Process Process server server - server * server
Kernel

mage Kernel

Figure 12: . The CIient-Ser;'er Model

Scanned with CamScanner

Another advantage of the client-server model is its adaptability to use in distributed SYStemy

(figure 13). If a client communicates with a server by sending it messages, the client neeq

know whether the message is handled locally i_“ its own machmci.or vghcthcr it wgs sent
across a network to a server on a remote machinc. As faras the ¢ tl,cn:cls coremet e §
thing happens in both cases: a request was sent and a reply came back.

Machine 1 Machine 2 Machine 3 Machmc 4...

Kernel | Ketnel | Kernel Kernel

9| | |

Message from Client to server

. Figure 13: The Client-Server Model in a distributed System

T boe o

The picture painted above of a kernel that handles only the transport of messages from: =
-clients to servers and back is not completely realistic. Some operating system functions:
(such as loading commands into the physical I/O device registers) are difficult, if not |
impossible,to do from user-space programs. There are two ways of dealing with this :
problem. One way is to have some critical server processes (e.g. I/O device drivers) actually

run in kernel mode, with complete access to all the hardware, but still communicate with *
other processes using the noy\mal message mechanism. ‘

The other way is to build a minimal amount of mechanism into the kerncl, but leave the
policy decisions up to servers in user space. For example, the kemel might recognize thata
message sent to a certain special address means to take the conterits of that message and

itinto the I/O device registers for some disk, to start a disk read. In this example, the kernel
would not even inspect the bytes in the message to see if they were valid or meaningful; it
would just blindly copy them into the disk’s device registers. (Obviously some scheme for

limiting such messages o authorised processes only must be used.) The split between
mechanism and policy is an important concept; it occurs again and again in operating
Systems in various contexts. .o :

Scanned with CamScanner

E

oy T

kil S & S asiial n L SR

